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We use a driving field, of the type first suggested by Evans, to generate a steady 
heat current in the simplest possible system, a two-dimensional periodic "fluid" 
of three hard disks. Hard-disk motion equations can be conveniently derived 
from repulsive constant-force or linear-force potentials by considering the 
infinitely repulsive limit of these potentials. We show that the isoenergetic and 
isokinetic forms of the nonequilibrium equations of motion generate steady-state 
heat conductivities differing by terms of order 1/N, where N is the number of 
particles. The resulting conductivities appear to vary as the logarithm of the 
driving field strength. Even at low fields, the three-body periodic-system results 
lie well below Enskog's infinite-system prediction. 

KEY WORDS: Nonequilibrium molecular dynamics; heat conductivity; non- 
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1 .  M O T I V A T I O N  A N D  I N T R O D U C T I O N  

Small systems can provide instructive simple models for complicated 
phenomena  and  tests for approximate  theories. For  instance, the 
"correlated-cell model" for melt ing describes the equi l ibr ium "melt ing" of a 
periodic system of two hard disks or spheres. ~1~ In the high-density phase 

each of the two particles is t rapped in a cage composed of the periodic 
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images of its "neighbor," the other particle. As the density is reduced it sud- 
denly becomes possible for the mutually caged particles to "separate." Each 
can then percolate through a periodic crystal composed of the other's 
periodic images. This percolation can be described in either of two alter- 
native ways: in the "infinite-space" view, the particle coordinates are 
allowed to grow without bound, and the two-particle force law depends on 
the interparticle separation in a periodic way; in the "finite-space" view, the 
particle coordinates are confined to a fixed cell and the interaction is short 
ranged. In the latter case a particle "leaving" the fundamental unit cell of 
the lattice is reintroduced, otherwise unchanged, on the opposite side of the 
cell. 

This latter finite-space viewpoint is usual in discussions of computer 
simulations of small systems. It has the property of "mixing" the particles' 
spatial coordinates. As the calculation proceeds, the coordinates within the 
fundamental cell no longer contain explicit information as to the number of 
times the particles have traversed the periodic boundaries. In the 
equilibrium case this "mixing" has no important consequences. 

We use the word "mixing" in a nontechnical sense (hence the 
quotation marks) to indicate that the information associated with the 
integers n x and ny distinguishing the various periodic images at coordinates 
x +  nxL x, y + nyLy is lost in a finite-space calculation. 

Away from equilibrium the situation is different. Away from 
equilibrium, driving fields, performing work, and constraint forces, 
extracting heat, can be used to accelerate particles. In such cases the "exter- 
nal work," calculated by integrating the driving force times the particle dis- 
placements, depends upon the "infinite-space" displacements of the par- 
ticles. The information associated with these displacements is destroyed by 
the periodic boundaries. The periodic boundaries introduce a spatial 
"mixing," enforcing long-range periodicity and homogeneity, even in the 
presence of accelerating directional fields. 

By now, many simple nonequilibrium models of small periodic systems 
have been studied. Solutions of the Boltzmann equation for both diffusive 
and shear flows of two disks and two spheres have been obtained. (2 4) In 
addition to the steady-state shear-thinning and normal stresses, (2'3) the 
complete time-dependence of the transient flows, (3'4) and the time develop- 
ment of the nonequilibrium entropy (3) are now available. 

In all of this new nonequilibrium work periodic boundaries have been 
used to obtain solutions that are spatially homogeneous and depend only 
slightly on the number of particles used. Unfortunately, existing theories 
were largely developed before computer simulation became widespread. 
These theories were formulated without explicitly taking the boundaries 
into account. For this reason, many of the nonequilibrium theoretical 
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developments are not directly applicable to the systems studied using 
molecular dynamics. The nonequilibrium entropies and other properties 
resulting from the new solutions (2~4~ should provide useful guides to the 
generalization of the Zubarev-Jaynes nonlinear response theory/5'6/ to 
include the "mixing" effect inherent in the use of periodic boundaries. 

An exact small-system analysis of heat flow is more complicated than 
the corresponding analyses for diffusion and viscosity. Diffusive and shear 
flows can be simulated with periodic two-body systems. Three bodies are 
required for the kinetic transfer of heat in the absence of a mass current. 
The corresponding three-body kinetic-theory calculations are similar in 
complexity to those required to estimate the magnitudes of the 
hydrodynamic "long-time" tails. We expect that a general awareness of 
these outstanding, tractable, and important, few-body problems in the 
kinetic theory of periodic systems will stimulate progress toward analytical 
solutions. 

None of these nonequilibrium problems could have been posed 
precisely in the absence of an explicitly formulated "thermostat" designed 
to maintain constant energy or constant temperature. In the computer 
simulations it is usual to define the temperature in terms of the kinetic 
energy K. With this definition--K= NkT in two dimensions, 3NkT/2 in 
three dimensions--a special constraint force keeping the kinetic tem- 
perature constant can be formulated. Similar constraints can alternatively 
be applied to the total energy, E =  K +  ~b, or to other thermodynamic and 
hydrodynamic variables. 

Mechanics and ensemble theory have recently been used to suggest 
general methods for finding equations of motion incorporating thermostats 
or other constraints. Gauss gave a general prescription for constraint forces 
in his "principle of least constraint. ''t7) Nose (8'9) suggested a more 
specialized alternative designed to reproduce the phase-space distributions 
associated with Gibbs' canonical and isobaric-isothermal ensembles. In 
addition to these two approaches, there are many other forms, ~1~ suggested 
by control theory, which might prove useful. 

From both the computational and theoretical points of view, it is 
desirable that the equations of motion both be time reversible and exhibit 
an energy-like constant of the motion. A system of equations giving the 
time-development of the particle coordinates is said to be time reversible if 
a movie of the motion, run backwards, still satisfies the same equations. 
Both Gauss' and Nos6's equations are time reversible. Both sets of 
equations also have energy-like constants of the motion. In the equilibrium 
case the constants correspond to the constrained variables or to a total 
energy. In the nonequilibrium case the constants are more complicated in 
form, but still correspond to effective energies. These constants and the 
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feature of time reversibility facilitate comparisons and checks of the work. 
They also simplify analytic treatment. The equations of motion describing 
Gauss' isoenergetic and isothermal molecular dynamics are the simplest 
having these desirable characteristics. We therefore adopt them here. 

For larger systems, Nos6's canonical thermostat (8 lo5 is almost as 
useful. Both Gauss' constraint thermostat and Nos6's canonical thermostat 
have equations of motion which fit nicely into the theoretical treatment of 
systems far from equilibrium being developed by Evans, Morriss, and 
Holian. (6"n) Because the theory is now in a primitive state, lacking as it 
does an explicit treatment of the mixing effect of periodic boundaries, 
accurate small-system results should be valuable guides to the necessary 
generalizations. 

In Section 2 we describe and discuss the differential equations of 
motion governing heat flow in Gaussian isoenergetic and isothermal 
(isokinetic) systems of three hard disks. Corresponding calculations of con- 
ductivity for many-body Lennard-Jones systems ~ and for soft 
spheres ~1s'~6/ using the same (~2'~s'16/ or closely related (~3'~4) methods have 
appeared during the past three years. In Section 3 we describe and discuss 
the resulting thermodynamic and hydrodynamic properties. 

2. ISOENERGETIC  A N D  ISOKINET IC  E Q U A T I O N S  OF M O T I O N  
FOR H A R D  DISKS 

We consider three classical hard disks, each with mass m and diameter a, 
confined to a square periodic box. The periodic boundaries eliminate edge 
effects. Such a system, with fixed center of mass and a Gaussian constraint 
force fixing either the total energy E or the kinetic energy K, could be 
described in a seven-dimensional phase space spanned by four coordinates 
and three momenta. In Gaussian dynamics the thermodynamic friction 
coefficient ~, used to impose the constraint of constant E or K, is an explicit 
function of the coordinates and momenta, not an independent variable. 

The analogous system described with a Nos6 canonical thermostat 
would require two more independent dynamical variables, so that the 
phase space would be nine-dimensional. In the Nos6 case, four coordinates 
and four momenta, plus the thermodynamic friction coefficient ~, would be 
required. In the Nos6 case the friction coefficient is not an explicit function 
of coordinates and momenta, but instead depends on the integrated time 
history of the system, very much as does a "memory function." 

In either case, Gauss or Nos6, it is more convenient to work with the 
full set of all six space coordinates and all six momenta. The Gaussian con- 
stant-energy or constant-temperature constraint is incorporated directly 
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into the equations of motion. The form of the constraint force follows from 
Gauss' principle of least constraint, and is linear in the momenta(7~: 

F C = --~p = --~mf (1) 

Each of the particles in the system has a constraint force proportional to its 
momentum, of the form (1), added to the other forces acting on it. The fric- 
tion coefficient ff in (1) varies with time so as to fix either the total energy, 
E =  ~ + K, or the kinetic energy K. In the most general case, the particle 
accelerations include three contributions in addition to those from the con- 
straint force (1). These are the "applied" forces Fa from the interparticle 
interactions, the "boundary" forces Fb, and the "driving" forces F, .  In our 
periodic simulations boundary forces are absent. 

As is usual, we denote the "heat flux vector" by Q. The heat flux vec- 
tor gives the magnitude and direction of the flow of energy, per unit time 
and area (length in two dimensions), averaged over the periodic volume V. 
V is an area in our two-dimensional systems. The form of the heat flux is 
readily established (12 16): 

Q V =  ~ i.iE ~ + ~ ~ (ro)[Fu. (f. i + 6)/2] (2) 

where E i is the kinetic energy of particle i plus half the potential energy 
particle i shares with other particles j. The double sum includes each dis- 
tinct pair of particles once. 

To produce a heat flow consistent with linear response theory and 
with irreversible thermodynamics, we follow Evans, (1z'13) introducing the 
parameter 2 to indicate the relative strength of the "driving" force Fd. Each 
particle is accelerated by a force, proportional to 2, and depending upon 
that particle's contributions to the energy E and to the potential part of the 
pressure tensor PC The field-strength parameter 2 has units of inverse 
length. The product 2T plays the role of the temperature gradient VT in 
driving a heat flux Q. 

We use 3E and 5P ~ to indicate the energy and potential pressure con- 
tributions of a particle, relative to the instantaneous mean value--so that 
6El = E 1 - (E 1 + E2 + E3)/3, for instance. We arbitrarily choose to generate 
a heat flow parallel to the x axis. With that choice, Evans' driving force is 

Fd = 2(c5E + 6P~x V, 6P~y V) (3) 

Knowing the driving force, we can calculate the Gaussian friction coef- 
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ficient ~ in the constraint force (1) necessary to keep the total energy E or 
kinetic energy K constant: 

~E = (2Qx V)/2K (4E) 

{ ,c = ( 2Qx v -  4~ )/2K (4K) 

where Qx is the x component of the heat flux vector Q. 
The 12 equations of motion, four for each disk, have the following 

form: 

2 = p~/m, 

p = py/m, [)y = Fy - ~py q.- .~((~P~ V) 
(5) 

where ~ is given by (4) and is the same for all of the particles. On the other 
hand, we emphasize that each particle has its own individual relative 
energy 6E and relative potential pressure tensor 6W. The total momentum 
is a constant of the motion which we choose to set equal to zero. The 
applied forces F, constraint forces -~p,  and driving forces (proportional 
to 2) separately sum to zero, so that, from the "infinite-space" view, the 
center of mass is also fixed. 

The interparticle forces F x and Fy are calculated taking the periodic 
boundary into account, using the nearest-image convention. The "driving" 
force, proportional to 2, and the "constraint" or "control" force, propor- 
tional to ~, produce curved trajectories, even in the absence of interparticle 
forces. 

It is easy to see that the equations of motion (5) are time reversible. 
The variables which change sign in the reversed motion include 
{2, ~}, {Px, Py}, and ~. The coordinates {x, y}, forces {F x, Fy}, and 2 are 
unchanged in the reversed motion. Because the heat flux Q changes sign in 
the reversed motion while the direction of the driving force does not, the 
equations exhibit the same paradoxical behavior as do Newton's equations: 
mathematical reversibility with the capability of simulating irreversible 
behavior. In any long-time-average finite-precision solution of the "rever- 
sible" equations of motion, one invariably finds a positive diffusion coef- 
ficient, positive viscosities, and a positive heat conductivity. 

In the intervals between collisions, F x and F v vanish, and the 
isoenergetic and isokinetic trajectories coincide. In this degenerate 
situation, the motion equations (5) become relatively simple in structure, 
quartic functions of the momenta {px, py}. Even so, we were not able to 
integrate the free-flight motion equations analytically and resorted to 
numerical integration. 
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In numerical work, it is convenient to integrate the equations (5) in 
two separate stages, using a "streaming" routine between collisions 
followed by a separate "collision" routine during collisions. The first 
routine calculates trajectories between collisions, when all of the interpar- 
ticle forces Fx and F v are zero. The second evaluates the momentum trans- 
fers that occur during collisions. During the collisions the equations can be 
simplified. The coordinates are kept fixed and the progress of the momenta 
Px and py is followed under the influence of constant applied forces with 
time-varying constraint and driving forces. 

In our exploratory work we used several forms and strengths of the 
interparticle forces to verify that the fixed-coordinate limit was well defined, 
and independent of the form of the force law. The force used in the work 
reported here, in Table I, with the collisions carried out at fixed coor- 
dinates, was a constant, and was applied to the colliding particles until the 
time integral of the colliding pair's relative momentum again reached its 
precotlision value, zero. This constant-force collision model is equivalent to 
considering a steep effective repulsive potential, linear in the colliding pair's 
separation between a and a + &r, and taking the limit &r ~ 0. 

In our calculations each collision had to be calculated twice, once with 
the isoenergetic equations of motion, (4E) and (5), and once with the 
isokinetic equations of motion, (4K) and (5). In each of these cases the 
coordinates were fixed and the driving force contribution 26E was set equal 

Table I. Pressure and Heat  C o n d u c t i v i t y  for Three Hard Disks as a F u n c t i o n  
of Field S t r e n g t h  A a 

~:( a/k )(m/k T)~12 

n P:,xV/NkT Pyy V/NkT Q:~ V(m/kT)I/2/NkT (E) (K) 

0 1.21 + 0.75,0.97 0.79 + 0.65,0,83 0.45 + 0.32,0.59 0.22 0.30 
1 1.08+0.71,0.91 0.92 + 0.70,0.91 0.3l+0.19,0.35 0.29 0.38 
2 1.02+0.72,0.94 0.98+0.74,0.98 0.17+0.12,0.22 0.33 0.46 
3 1.0t + 0.76, t.0l 0.99 + 0.74,0.98 0.I0 + 0.07,0.13 0.39 0.54 
4 1.00 + 0.73,0.97 1.00 + 0.75,1.00 0.05 + 0.04,0.08 0.42 0.59 
5 1.00 + 0.75,1.00 1.00 + 0.74,0.98 0.03 + 0.02,0.05 0.45 0.68 

Eq 1.00 + 0.74,0.99 1.00 + 0.74,0.99 0.00 + 0.00,0.00 

The volume V= 4a2(3/4) 1/2 is four times the close-packed volume. The dimensionless field 
strength 2a = (1/2)" varied from 1 (n = 0) to 1/32 (n = 5). The streaming contributions to the 
pressure tensor and heat flux vector are given first, followed by the isoenergetic and 
isokinetic collisional contributions, separated by commas. The calculations are based on 
runs of from 2500 to 15 000 collisions. The uncertainties in PV/NkT and Qx V(m/kT)U2/NkT 
are approximately 0.01. The last line of Table I contains exact (analytic) equilibrium values. 
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to zero. Both simplifications are exact for the limiting case in which the 
potential becomes a hard-disk potential. This too was verified by a series of 
calculations using repulsive potentials of various forms and strengths. 

Because the rates of change of momenta and contributions to the 
pressure and to the heat flux vector differ, isoenergetic and isokinetic 
collisional averages had to be accumulated separately. We kept track of the 
time integrals of the streaming and collisional contributions to the pressure 
tensors and the heat flux vectors by adding the corresponding integrands to 
the 12 already being integrated in the motion equations (4) and (5). 

It is interesting that even the time-averaged hard-disk collisional 
pressure tensors and heat-flux vectors for finite-system isoenergetic and 
isokinetic collisions differ. The reason for this difference can be understood 
by considering the effect of the constraint force -~p. In the isokinetic case 
this force resists the slowing-down of the colliding pair's relative momen- 
tum. This leads to a "longer" (but still only infinitesimal) collision 
duration, with a correspondingly greater collisional momentum flux. 

Averaged over impact parameters, the increased collision times in the 
isokinetic case increase the nonideal part of the thermodynamic 
pressure. (171 In two dimensions the increase corresponds to a factor of 
I N -  1 I / I N -  (3/2)]. Thus, in the large-system "thermodynamic limit" the 
two pressures coincide. The maximum difference between them occurs for 
the two-particle case. In that case the isokinetic collisional pressure is twice 
the isoenergetic value. For our three-disk system the isokinetic collisional 
pressure is predicted to exceed the corresponding isoenergetic contribution 
by a factor of [ 3 -  1]/[-3- (3/2)] = 4/3. This prediction is fully consistent 
with our numerical calculations. See Table I. 

The isokinetic collisional heat fluxes are rather close to twice the 
corresponding isoenergetic fluxes, as is also shown in Table I. From the 
standpoint of Green-Kubo equilibrium fluctuation theory these non- 
equilibrium steady-state collisional fluxes include not only a "potential" 
contribution, but also a "cross" contribution, coupling the convective 
streaming with the impulsive collisions. These terms can be estimated 
relatively accurately, as was done for large systems by Alder, Gass, and 
Wainwright. ~18) From their work we expect that the heat-flux ratio depends 
upon the density as well as the strength of the driving field )~. 

To simplify checking our work we chose a density, one fourth the 
close-packed density, for which the canonical partition function (and also 
the isoenergetic and isokinetic pressures) could be calculated analytically. 
The effects of order 1IN relating molecular dynamics results to canonical- 
ensemble averages have been considered before, by many workers. (~7~~ 
We avoided lower densities than one-fourth the close-packed density 
because, at strong fields, the equations of motion trap the particles in a 
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streaming motion parallel to the field. This effect is absent at higher den- 
sities or in larger systems. 

The isoenergetic and isokinetic collisions can be treated by (relatively 
complicated, but computationally less time consuming) analytic methods, 
which we are still developing and testing. We expect to report on these 
methods, applied to larger systems, in the future, ll7t 

3. H A R D - D I S K  C O N D U C T I V I T I E S  

The three-disk isoenergetic and isokinetic conductivities found from 
the relation 

~c -= Qx/)oT (6) 

are listed in Table I. We use the definition T =  K/3k for the temperature T. 
The maximum possible value of Qx V, achieved when one particle has an x 
velocity component 2(kT/m)  1/2 and the others have - ( k T / m )  ~/2, is 
3m( k T/m ) 3/2. 

For field strengths 2 greater than unity the three disks eventually 
achieve this free-streaming state, with the maximum collisionless value of 
Qx V. This instability is not important at low field strengths. In the low- 
field limit, Evans' analysis establishes that the heat current approaches the 
linear-response result Q~ = ~2T. We use this same relation to define the 
heat conductivity K for finite 2. At finite fields the heat conductivity 
decreases below the apparent low-field limiting behavior. 

At low fields the steady-state conductivity is obscured by statistical 
fluctuations. For three disks at the density we chose, one-fourth the close- 
packed density, there is a useful range of driving fields varying from/i~r = 1 
to 1/32. We gathered pressure and heat-flux data over runs of a few thou- 
sand collisions. The results in the Table suggest a logarithmic dependence 
of all three conductivity components (streaming, collisional isoenergetic, 
and collisional isokinetic) on field strength: 

~c(~/k)(m/kT) ~/2 - 0.236 + 0.046n (7E) 

~c(~r/k)(m/kT) 1/2 "-- 0.305 +0.075n (7K) 

where the dimensionless field strength 2o is (1/2) n. These rough fits are 
compared to the data in Fig. 1. 

We include also in Table I the measured pressure-tensor components, 
for comparison with those predicted from the canonical partition-function 
value for three disks, (PV/NkT)o,n = 1.495 at zero field. The prediction, giv- 
ing ( (PV/NkT)m d = 1.7425 for the isoenergetic dynamics and 1.9900 for the 
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Fig, 1. 
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Heat conductivity of three periodic hard disks, 3"he data from Table I are shown 
along with the isoenergetic and isothermal fits given by Eq. (7) of the text. 

isokinetic dynamics, is based on relations linking the canonical ensemble 
pressure to the molecular dynamics pressure through the pair  distribution 
function. (~739) The isoenergetic case is independent of dimensionality: 

( N -  1 ) ( P V -  Nkr),nd = N ( P V  ~ NkT)o~n (BE) 

The isokinetic case (~TJ is more complicated. In two dimensions, the 
isokinetic pressure, for a fluid, has the form 

( N -  [ ) ( P V -  NkT)~a = N ( P V -  NkT)r 

Gass' Enskog-theory conductivity(21)--in the thermodynamic limit, for 
which the isoenergetic and isokinetic values coincide--provides an order- 
of-magnitude estimate for the thermodynamic state we investigated: 

~c(~/k)(m/kT) ~/~ - 1.7 19) 

The three-disk conductivities in Table I are all significantly less than the 
Enskog estimate and varied by roughly a factor of 2 over the useful range 
of field strengths. Preliminary results for 12 disks, at the same reduced den- 
sity, lie close to Enskog's estimate (9). Kirkpatrick's success (221 in explain- 
ing the shear-thinning found in computer experiments simulating viscous 
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flows provides hope that  the field dependence found here can be similarly 
understood.  The form of the logari thmic dependence is the same as that 
found by Evans (23~ in a two-dimensional  viscosity study. It is most  
interesting that this behavior  already seems to appear  in a three-body 
system. 
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